Package: CSTE 3.0.0
CSTE: Covariate Specific Treatment Effect (CSTE) Curve
A uniform statistical inferential tool in making individualized treatment decisions, which implements the methods of Ma et al. (2017)<doi:10.1177/0962280214541724> and Guo et al. (2021)<doi:10.1080/01621459.2020.1865167>. It uses a flexible semiparametric modeling strategy for heterogeneous treatment effect estimation in high-dimensional settings and can gave valid confidence bands. Based on it, one can find the subgroups of patients that benefit from each treatment, thereby making individualized treatment selection.
Authors:
CSTE_3.0.0.tar.gz
CSTE_3.0.0.zip(r-4.5)CSTE_3.0.0.zip(r-4.4)CSTE_3.0.0.zip(r-4.3)
CSTE_3.0.0.tgz(r-4.5-x86_64)CSTE_3.0.0.tgz(r-4.5-arm64)CSTE_3.0.0.tgz(r-4.4-x86_64)CSTE_3.0.0.tgz(r-4.4-arm64)CSTE_3.0.0.tgz(r-4.3-x86_64)CSTE_3.0.0.tgz(r-4.3-arm64)
CSTE_3.0.0.tar.gz(r-4.5-noble)CSTE_3.0.0.tar.gz(r-4.4-noble)
CSTE_3.0.0.tgz(r-4.4-emscripten)CSTE_3.0.0.tgz(r-4.3-emscripten)
CSTE.pdf |CSTE.html✨
CSTE/json (API)
# Install 'CSTE' in R: |
install.packages('CSTE', repos = c('https://hwj0828.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 months agofrom:a2329d6325. Checks:12 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 20 2025 |
R-4.5-win-x86_64 | OK | Mar 20 2025 |
R-4.5-mac-x86_64 | OK | Mar 20 2025 |
R-4.5-mac-aarch64 | OK | Mar 20 2025 |
R-4.5-linux-x86_64 | OK | Mar 20 2025 |
R-4.4-win-x86_64 | OK | Mar 20 2025 |
R-4.4-mac-x86_64 | OK | Mar 20 2025 |
R-4.4-mac-aarch64 | OK | Mar 20 2025 |
R-4.4-linux-x86_64 | OK | Mar 20 2025 |
R-4.3-win-x86_64 | OK | Mar 20 2025 |
R-4.3-mac-x86_64 | OK | Mar 20 2025 |
R-4.3-mac-aarch64 | OK | Mar 20 2025 |
Exports:cntcovcste_bincste_bin_SCBcste_survcste_surv_SCBgget.boundgetthreslogitinvlplmy_logitmy_survnormalizepenCpredict_cste_binprev_fit_cstepupu_invsampleQselect_cste_binztrans
Dependencies:ashbitopscliclustercolorspacedeSolvedfoptimfansifarverfdafdsFNNggplot2gluegtablehdrcdeisobandkernlabKernSmoothkslabelinglatticelifecyclelocfitlocpolmagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRCurlrlangscalessurvivaltibbleutf8vctrsviridisLitewithr